EDIT: Submarine power transportation is indeed on the list
Not transoceanic, but there are two projects currently proposed that will – when constructed – break the current record for the “longest undersea power transmission cable” (a record currently held by the North Sea Link at 720 km, or 450 miles.)
One of these projects is the Xlinks Morocco-UK Power Project which aims to lay 3,800 km (2,400 miles) of cable and sell Morocco’s solar power to England.
There is, as of yet, not enough cable in the world to even begin this project. The company proposing the project is building factories to produce this cable.
The other is the Australia-Asia Power Link, which aims to provide Australian solar power to Singapore using a 4,500 km (2,800 miles) undersea cable.
Where the Xlinks project ran into a “not enough cable in the world” problem, Sun Cable’s AAPL has apparently been running into a “not enough money in the world” problem, as it has repeatedly gotten into trouble with its investors.
EDIT: But also, storage is scaling up
@ProfessorGumby@midwest.social provided a fantastic link to a lot of energy storage mediums that are already in use in various grids across the world. These include (and the link the professor provided gives an excellent short summary on each)
- Pumped hydroelectric
- Compressed Air Energy Storage (CAES)
- Flywheels
- Supercapacitors
- And just plain batteries
Also, this wasn’t in the Gumby’s answer, but Finland’s Vatajankoski power plant uses a hot sand battery during its high-demand, low-production hours.
Hydrogen is projected to grow
@Hypx@kbin.social noted that hydrogen has advantages no other energy storage medium possesses: duration of storage and ease of piping/shipping. This is probably why numerous governments are investing in hydrogen production, and why Wood Mackenzie projects what looks like a 200-fold increase in production by the year 2050. (It’s a graph. I’m looking at a graph, so I am only estimating.)
Well the best solution is probably nuclear meeting the base load while solar helps with daytime peaks.
But otherwise pumped storage has promise. Have 2 reservoirs at different elevations connected by a turbine and pumps. When there is excess power durning the day, pump water to the upper reservoir. At night, let the water flow by gravity to the lower reservoir through a turbine and make power.
Transoceanic power transmission is just too expensive.
I’ll assume you are unfamiliar with the size of Singapore and the geography of the Northern Territory.
Singapore lacks the space for pumped storage. Singapore’s density is 8592 per square kilometre. Compare this to India at only 481 or the US at 37.
The Northern Territory in Australia is extremely flat and extremely arid, as such it lacks the topography to build water storage and the water required for it.
I doubt Singapore could meet its energy needs from solar even if every square centimeter was covered in solar panels.
But the point is, the pumped storage could be elsewhere in SE Asia rather than trying to transfer power from the other side of the planet.
Look, so solution is perfect. It is stupid to say “well that whole idea should be thrown out because it won’t work here.” That’s no different from anti-solar people saying we shouldn’t have solar because of clouds.
The only way I can make sense of Lurker’s comment is:
Assuming the above, this is a miscommunication.
Assuming anything else, Lurker’s comment doesn’t make that much sense.